Process Monitoring and Basic Statistics

Richard Metcalf Idaho National Laboratory

LLNL-INL Safeguards Training Program

July 23, 2009

Disclaimer

- Process Monitoring is a very large field, and I will not cover everything involved in the application
- Additionally, Statistics is a very precise science, with very specialized vernacular.
 - Pursuant with demystifying the vernacular, common patois will be employed

Overview

- What is Process Monitoring?
 - Where is it used?
 - What does it look like?
- Statistics
 - Basic Statistics Terminology
 - Random and Systematic Error
 - Gaussian (Normal Distribution)
 - Z, Students t, and significance
 - Cautions about Statistics

What is Process Monitoring (PM)?

- Observation of operating characteristics
 - Useful to Operators (is my plant running efficiently?)
 - Useful to Regulators (is the plant running safely?)
 - Useful to Safeguards (is the plant running securely?)

Process Monitoring Cont

- Supplement to existing MC&A methods
 - Increase "Safeguardability"
 - Provide Additional Confidence
 - Protect Against Different Threats
 - Potentially allow for larger facilities
 - Reduce Bias Error in DA methods
- Provide an early indication that something off
- Pinpoint areas for greater inspector attention

Process Monitoring

Processing Monitoring: Idaho Chemical Processing Plant

Process Monitoring, TAMES

Process Monitoring and Statistics

- Large Facilities always require application of statistics
 - How many barrels do I need to open for a 95% confidence that they contain 42g each of Pu?
 - How many DA samples must I take to be sure that the solution has the right concentration?
- Process Monitoring is even more statistics intensive
 - Often correlating tank levels, volume, temperature, pH (less common),

Statistics I: Basic Terminology

- Population: Entire collection of items that is the focus of concern
 - Students throughout our entire lecture series
- Sample: Set of a population that we use to make inferences about the entire population
 - Preferred in most cases because the population is too large or too difficult to measure
 - Students at INL attending the lecture series

Statistics: True Value

- JARGON WARNING
- "True" value sets are measurements about a Population
 - This can be very confusing
 - How much plutonium is in this tank is a "true" value
 - What we measure is not the "true" value,
 - We infer a confidence about the "true" value
 - Unfortunately, this term can be misused commonly in literature
 - The random error associated with a measurement without an estimate of the bias error can often be mistakenly referred to as a true set

Statistics: Distributions II

- Measurements around a "true" value will always show some error. For this lecture, lets assume that all of our error will be "normal"
 - That is not to say that there are not other distributions of error
 - That is also not to say that we will not see different types of error, just that they have the "normal" property
- Normal error is a Gaussian Distribution

Normal Distribution

- p(x) is the probability about x that our value will be found
- P(x) is the cumulative probability that x is within the set

Statistics: Types of Error

Error in most cases is either systematic (bias) error or random error

Statistics II: True Population Values

- Mean, Mode, and Median: Average, Most Common, Middle Value
- Average Deviation (uncommonly used): the average deviation from the mean value

$$\frac{1}{n} \sum_{i=1}^{n} \left| (x_i - \bar{x}) \right|$$

• Standard Deviation (common): Root-Mean-Square of the deviation _______

$$\sigma = \sqrt{\sum_{i=1}^{N} \frac{(x_{i} - \bar{x})^{2}}{N}} \; = \; \sqrt{\sum_{i=1}^{N} \frac{{x_{i}}^{2}}{N} - \mu^{2}}$$

Statistics III: Variance

- Variance: square the standard deviation
 - Several interesting properties, such as an additive property
 - The basic "unit" that people tend to use to describe samples
 - Can still be deceptive
 - Outliers can greatly affect a standard deviation (keep in mind that square has a big effect)

Statistics IV: Samples

- Sample Standard Deviation: measure of the standard deviation of the sample
 - The n-1 is related to the degrees of freedom,

Sample Standard Deviation
$$S = \sqrt{\sum_{i=1}^{n} \frac{(x_i - \bar{x})^2}{n-1}}$$

As n (sample size) approaches N (population size), this approaches the true standard deviation

Statistics: Z and Students t Testing

- Z testing: comparison of a sample and population mean to determine if there is a significant difference
 - Must be a test between two values
 - First value is an assumed value called the "null hypothesis"
 - Second value will be a calculated Z number or Z test statistic
 - Z testing is the most basic statistical test
 - Requires a known population deviation and mean
 - This is somewhat statistically cheating as we never actually have those numbers

Statistics: Students t Test

- Students t test is a test that uses the degrees of freedom based on the number of measurements to make assumptions about the normal distribution in comparing a sample to a believed normal
 - Invented by Guinness in Ireland for better stout
 - Uses some implicit assumptions related to the chi square distribution, normality in the error, and others which are significantly more arcane
 - Works almost exactly like a Z test
 - Recommended as the test of choice for most applications

Statistics: Z Statistics

Z and Students t tests

- Comparison of Population Means
- Determines likelihood of measured means the same or different
- Compared to a threshold, significance value (p value)

Z, T, P and Confidence Intervals

- Z and t statistics are compared to a P value
- P values are the likelihood that the result was a function of chance
 - P values are small for high confidence
 - P values are a typical reporting mechanism when comparing two groups
- Confidence Intervals are values that we can reasonably expect to contain the true values
- R values also exist, but that's correlation (linear regression)

Statistics Simplicity to Complexity

Statistics: Correlations and Causality

Next Time

Bill Domke will present an overview of the history of proliferation around the world

